Package 'phylocurve'

June 14, 2015

Date 2015-06-14 Title Phylogenetic Comparative Methods for Function-Valued and Other High-Dimensional Traits Author Eric W. Goolsby Maintainer Eric W. Goolsby Maintainer Poscription Tools for studying the evolution of function-valued traits (as well as other high-dimensional traits) including ancestral state reconstruction, estimating phylogenetic signal, and assessing correlated trait evolution. Visit http://www.phylocurve.org for more information. License GPL (>= 2) URL http://www.phylocurve.org Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package compare.multivar.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult nonlinear.fit
High-Dimensional Traits Author Eric W. Goolsby Maintainer Eric W. Goolsby <eric.goolsby.evolution@gmail.com> Description Tools for studying the evolution of function-valued traits (as well as other high-dimensional traits) including ancestral state reconstruction, estimating phylogenetic signal, and assessing correlated trait evolution. Visit http://www.phylocurve.org for more information. License GPL (>= 2) URL http://www.phylocurve.org Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package compare.multivar.rate.mult get_aligned_function_data get_tip_coefficients GP.fit get_aligned_function_data get_tip_coefficients GP.fit get_aligned_function_factor get_factor get_factor</eric.goolsby.evolution@gmail.com>
Maintainer Eric W. Goolsby <eric.goolsby.evolution@gmail.com> Description Tools for studying the evolution of function-valued traits (as well as other high-dimensional traits) including ancestral state reconstruction, estimating phylogenetic signal, and assessing correlated trait evolution. Visit http://www.phylocurve.org for more information. License GPL (>= 2) URL http://www.phylocurve.org Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package</eric.goolsby.evolution@gmail.com>
Description Tools for studying the evolution of function-valued traits (as well as other high-dimensional traits) including ancestral state reconstruction, estimating phylogenetic signal, and assessing correlated trait evolution. Visit http://www.phylocurve.org for more information. License GPL (>= 2) URL http://www.phylocurve.org Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package
dimensional traits) including ancestral state reconstruction, estimating phylogenetic signal, and assessing correlated trait evolution. Visit http://www.phylocurve.org for more information. License GPL (>= 2) URL http://www.phylocurve.org Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package
URL http://www.phylocurve.org Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package compare.multivar.rate.mult compare.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult 8
Depends drc Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package
Imports ape, geiger, phytools, abind, phylolm, GPfit, dtw NeedsCompilation no R topics documented: phylocurve-package
NeedsCompilation no R topics documented: phylocurve-package compare.multivar.rate.mult compare.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult 8
NeedsCompilation no R topics documented: phylocurve-package compare.multivar.rate.mult compare.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult 8
R topics documented: phylocurve-package compare.multivar.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult
phylocurve-package
compare.multivar.rate.mult compare.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult
compare.multivar.rate.mult compare.rate.mult get_aligned_function_data get_tip_coefficients GP.fit K.mult
get_aligned_function_data 5 get_tip_coefficients 6 GP.fit 7 K.mult 8
get_tip_coefficients 6 GP.fit 7 K.mult 8
GP.fit
K.mult
pgls.mult
phylocurve

 sim.curves
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

2 phylocurve-package

Index 22

 ${\it Phylogenetic\ Comparative\ Methods\ for\ Function-Valued\ and\ Other} \\ {\it High-Dimensional\ Traits}$

Description

Tools for studying the evolution of function-valued traits (as well as other high-dimensional traits) including ancestral state reconstruction, estimating phylogenetic signal, and assessing correlated trait evolution.

Details

Package: phylocurve Type: Package Version: 1.3.0 Date: 2015-06-14 License: GPL (>= 2)

Author(s)

Eric W. Goolsby <eric.goolsby.evolution@gmail.com>

References

Goolsby, E.W. 2015. "Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits." Systematic Biology. In press.

Adams, D.C. 2014. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution. 68:2675-2688.

Adams, D.C. 2014. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology. 63:685-697.

Ho, L. S. T. and Ane, C. 2014. "A linear-time algorithm for Gaussian and non-Gaussian trait evolution models". Systematic Biology 63(3):397-408.

Examples

```
require(phytools)

# simulate evolution of a function-valued trait (glm with logit link)
sim_data <- sim.curves()

# perform ancestral curve reconstruction
anc_recon <- phylocurve(y~x,tree = sim_data$tree,data = sim_data$data)

# get tip coefficients and aligned function data
tip_coefficients <- get_tip_coefficients(formula = y~x,tree = sim_data$tree,data = sim_data$data)
data <- get_aligned_function_data(tip_coefficients)</pre>
```

```
# estimate evolutionary rates
rate.mult.fitted <- rate.mult(sim_data$tree,data)</pre>
```

```
compare.multivar.rate.mult
```

Compare multiple multivariate evolutionary rates

Description

Compares hypotheses about evolutionary rates for multivariate traits combining methods from Adams (2013) and Adams (2014), using a covariance-based approach as described in Goolsby (2015).

Usage

```
compare.multivar.rate.mult(null_model, alt_model_list)
```

Arguments

null_model	A fitted rate.mult object in which all data is fit under the null hypothesis (e.g., all traits fit under the same evolutionary rate).
alt_model_list	A fitted rate.mult object in which all data is fit under the alternative hypothesis (e.g., traits are fit under different evolutionary rates).

Value

null.logL	Log-likelihood of the null model
null.pars	Number of parameters used to fit the null model
alt.logL	Log-likelihood of the alternative model
alt.pars	Number of parameters used to fit the alternative model
df	Degrees of freedom for likelihood ratio test
chi_sq	Chi-square value for likelihood ratio test
р	p-value for likelihood ratio test

Author(s)

Eric W. Goolsby

References

Adams D.C. 2013. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Systematic Biology. 62:181-192.

Adams D.C. 2014. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology. 63:166-177.

Golsby E.W. 2015. Covariance-based maximum likelihood estimation is equivalent to and more flexible than distance-based phylogenetic comparative methods for high-dimensional multivariate traits. In review.

4 compare.rate.mult

See Also

```
rate.mult, compare.rate.mult, compare.evol.rates
```

Examples

```
# Simulate random data for 2 multivariate traits
# (5 dimensions each) with different evolutionary rates
s <- sim.mult(nspecies = 50,R = diag(c(rep(1,5),c(rep(2,5)))))

# Estimate the null model (a single rate parameter)
null <- rate.mult(tree = s$tree,Y = s$Y_means)

# Estimate components of the alternative hypothesis and store in a list
alt1 <- rate.mult(s$tree,Y = s$Y_means[,c(1,2:6)])
alt2 <- rate.mult(s$tree,Y = s$Y_means[,c(1,7:11)])
alt_list <- list(alt1,alt2)

# Compare the null to the alternative to hypothesis
comparison <- compare.multivar.rate.mult(null_model = null,alt_model_list = alt_list)</pre>
```

compare.rate.mult

Compare evolutionary rates

Description

This function tests for differences in evolutionary rates (and optionally, evolutionary models) using the methods described in Adams (2014) and Goolsby (2015) in a covariance-based approach.

Usage

```
compare.rate.mult(rate.mult.fitted, groups, fit_individual = FALSE)
```

Arguments

rate.mult.fitted

A fitted rate.mult object in which all data is fit under the null hypothesis (e.g., all trait dimensions fit under the same evolutionary rate and/or evolutionary model).

groups A named factor by species specifying which group to assign individual species.

For example, given a tree with 16 species, the command setNames(object = factor(c(rep("a",8),rep("b",8)),levels=c("a","b")),nm = tree\$tip.label) assigns 8

species to group "a" and 8 species to group "b".

fit_individual Whether or not to fit individual evolutionary models to each trait dimension (if

TRUE), or if a single evolutionary model is fit to all trait dimensions (if FALSE,

the default). Ignored if model="BM".

Value

null.logL	Log-likelihood of the null model
null.pars	Number of parameters used to fit the null model
alt.logL	Log-likelihood of the alternative model
alt.pars	Number of parameters used to fit the alternative model

df Degrees of freedom for likelihood ratio test

chi_sq Chi-square value for likelihood ratio test

p p-value for likelihood ratio test

null_model_list
 List of fitted rate.mult objects for the null model corresponding to each group

alt_model_list
 List of fitted rate.mult objects for the alternative model corresponding to each

List of fitted rate.mult objects for the alternative model corresponding to each group

Author(s)

Eric W. Goolsby

References

Adams D.C. 2014. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology. 63:166-177.

Golsby E.W. 2015. Covariance-based maximum likelihood estimation is equivalent to and more flexible than distance-based phylogenetic comparative methods for high-dimensional multivariate traits. In review.

See Also

```
rate.mult, compare.multivar.rate.mult, compare.evol.rates
```

Examples

```
# Simulate random data for a multivariate trait with 50 species and 10 trait dimensions
s <- sim.mult(nspecies = 50,R = diag(10))

# Estimate the null model (a single rate parameter for the entire tree)
null <- rate.mult(tree = s$tree,Y = s$Y_means)

# Set 2 groups of species to test for different evolutionary rates
groups <- setNames(factor(c(rep("a",25),rep("b",25)),levels=c("a","b")),s$tree$tip.label)

# Test the hypothesis of different evolutionary rates for each group
compare.rate.mult(rate.mult.fitted = null,groups = groups)</pre>
```

```
get_aligned_function_data
```

Estimate aligned data for function-valued traits

Description

Estiamtes function data for tip species curves from tip coefficients.

```
get_aligned_function_data(tip_coefficients, ylength, ymin = 0.01, ymax = 0.99)
```

6 get_tip_coefficients

Arguments

tip_coefficients

Matrix of estimated regression coefficients of tip curves. Row names should correspond to species names. The first column should contain the logit glm intercept; the second column contains the logit glm slope.

ylength How many landmarks (points on the curve) to evaluate.

ymin Because 0 and 1 are undefined for inverse logit functions, the minimum and

maximum values are defaulted to .01 and .99. Can be adjusted as needed.

ymax Because 0 and 1 are undefined for inverse logit functions, the minimum and

maximum values are defaulted to .01 and .99. Can be adjusted as needed.

Value

A data frame of aligned X-coordinates for function-valued traits for a given constant Y.

Author(s)

Eric W. Goolsby

References

Goolsby, E.W. 2015. "Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits." Systematic Biology. In press.

Examples

```
# simulate evolution of a function-valued trait (glm with logit link)
sim_data <- sim.curves()

# get tip coefficients and aligned function data
tip_coefficients <- get_tip_coefficients(formula = y~x, tree = sim_data$tree, data = sim_data$data)
data <- get_aligned_function_data(tip_coefficients)

# estimate evolutionary rates
rate.mult.fitted <- rate.mult(sim_data$tree, data)</pre>
```

Description

Estiamtes regression coefficients for tip species curves from raw data. May be useful if wanting to perform methods without first performing ancestral curve reconstruction via the phylocurve() function.

```
get_tip_coefficients(formula, tree, data, ymin = 0.01, ymax = 0.99,
ylength = 30, species_identifier = "species", verbose = FALSE)
```

GP.fit

Arguments

formula	Formula for function-valued trait (currently only supports models of the form Y~X)	
tree	A phylogenetic tree of class "phylo"	
data	A data frame with data for tip curve estimation, where each row contains a single data point. A column named "species" has the species names corresponding to each data point, a predictor (X) variable and the response (Y) variable, which must be scaled between 0 and 1.	
ymin	Because 0 and 1 are undefined for inverse logit functions, the minimum and maximum values are defaulted to .01 and .99. Can be adjusted as needed.	
ymax	Because 0 and 1 are undefined for inverse logit functions, the minimum and maximum values are defaulted to .01 and .99. Can be adjusted as needed.	
ylength	How many landmarks (points on the curve) to evaluate.	
species_identifier		
	Default is "species". Can be changed if the column in data has a different species identifier name.	
verbose	ether to print progress during tip curve coefficient estimation.	

Value

Estimated regression coefficients of tip curves.

Examples

```
# simulate evolution of a function-valued trait (glm with logit link)
sim_data <- sim.curves()

# get tip coefficients and aligned function data
tip_coefficients <- get_tip_coefficients(formula = y~x, tree = sim_data$tree, data = sim_data$data)
data <- get_aligned_function_data(tip_coefficients)

# estimate evolutionary rates
rate.mult.fitted <- rate.mult(sim_data$tree, data)</pre>
```

GP.fit

Fit Gaussian process curves to species data

Description

Transforms raw data into regression curves using the GP_fit function in the GPfit package. The response data can be constrained between minima and maxima (for example, the default sets any negative predicted y value to 0).

```
GP.fit(data, x_variable, y_variable, min_x = -Inf, max_x = Inf,
min_y = 0, max_y = Inf, eval_length = 30, ...)
```

8 K.mult

Arguments

data	Data frame with function-valued species data along with a column named "species"
x_variable	The name of the column in data corresponding to the predictor (x) variable
y_variable	The name of the column in data corresponding to the response (y) variable
min_x	Lower range to remove from raw x data
max_x	Upper range to remove from raw x data
min_y	Lower range to remove from predicted response (for example, for response data in which only positive values are allowed, the min_y can be set to 0 (the default)).
max_y	Upper range to remove from predicted response.
eval_length	How many points to evaluate along the range of x.
	Optional further arguments to pass to the GP_fit function.

Value

X X (formatted for phylocurve.generalized)
 Y Y (formatted for phylocurve.generalized)

Examples

```
x_length <- 50
nspecies <- 25
sim_data <- sim.curves(nspecies = nspecies,x_length = x_length)

# Fit nonlinear curves to raw data
# NOT RUN (takes several minutes)
#curve_data <- GP.fit(data = sim_data$data,x_variable = "x",y_variable = "y",min_y = 0)

# Align curve data using dynamic time warping
# P <- phylocurve.generalized(tree = sim_data$tree,X = curve_data$X,Y = curve_data$Y)

# Perform comparative analyses on aligned curves
# rate.mult.fitted <- rate.mult(tree = P$tree,Y = P$aligned_data)
# K.mult(rate.mult.fitted)</pre>
```

K.mult

Multivariate phylogenetic signal

Description

Estimates multivariate phylogenetic signal (Adams 2014) using a covariance-based impelmentation (Goolsby 2015).

```
K.mult(rate.mult.fitted, iter = 1000)
```

nonlinear.fit 9

Arguments

rate.mult.fitted

A fitted rate.mult object

iter Number of phylogenetic permutations for significance testing

Value

phy.signal Multivariate phylogenetic signal (Kmult)

pvalue Significance of Kmult

Author(s)

Eric W. Goolsby

References

Adams, D.C. 2014. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology. 63:685-697.

Golsby E.W. 2015. Covariance-based maximum likelihood estimation is equivalent to and more flexible than distance-based phylogenetic comparative methods for high-dimensional multivariate traits. In review.

See Also

```
physignal
```

Examples

```
# Simulate random data for a multivariate trait with 50 species and 10 trait dimensions
s <- sim.mult(nspecies = 50,R = diag(10))

# Estimate evolutionary rates
rate.mult.fitted <- rate.mult(tree = s$tree,Y = s$Y_means)

# Estimate multivariate phylogenetic signal
K.mult(rate.mult.fitted = rate.mult.fitted)</pre>
```

nonlinear.fit

Fit nonlinear curves to species data

Description

Transforms raw data into regression curves using the drm function in the drc package. The response data can be constrained between minima and maxima (for example, the default sets any negative predicted y value to 0).

```
nonlinear.fit(data, x_variable, y_variable, fct = LL2.3(),
min_x = -Inf, max_x = Inf, min_y = 0, max_y = Inf, eval_length = 30, ...)
```

10 pgls.mult

Arguments

data	Data frame with function-valued species data along with a column named "species"
x_variable	The name of the column in data corresponding to the predictor (x) variable
y_variable	The name of the column in data corresponding to the response (y) variable
fct	Function type to pass to drm. Use getMeanFunctions for a full list.
min_x	Lower range to remove from raw x data
max_x	Upper range to remove from raw x data
min_y	Lower range to remove from predicted response (for example, for response data in which only positive values are allowed, the min_y can be set to 0 (the default)).
max_y	Upper range to remove from predicted response.
eval_length	How many points to evaluate along the range of x.
	Optional further arguments to pass to the drm function.

Value

X X (formatted for phylocurve.generalized)Y Y (formatted for phylocurve.generalized)

Examples

```
x_length <- 50
nspecies <- 25
sim_data <- sim.curves(nspecies = nspecies,x_length = x_length)

# Fit nonlinear curves to raw data
curve_data <- nonlinear.fit(data = sim_data$data,x_variable = "x",y_variable = "y",min_y = 0)

# Align curve data using dynamic time warping
# NOT RUN (takes several minutes)
# P <- phylocurve.generalized(tree = sim_data$tree,X = curve_data$X,Y = curve_data$Y)

# Perform comparative analyses on aligned curves
# rate.mult.fitted <- rate.mult(tree = P$tree,Y = P$aligned_data)
# K.mult(rate.mult.fitted)</pre>
```

pgls.mult

Multivariate phylogenetic generalized least squares

Description

Performs phylogenetic generalized least squares using the method described in Adams (2014) using a covariance-based approach (Goolsby 2015)

```
pgls.mult(rate.mult.fitted, X)
```

phylocurve 11

Arguments

rate.mult.fitted

A fitted rate.mult object

Χ

A matrix of predictor variables X for PGLS. Note, an intercept is estimated automatically (do not add a column of ones to X). Rows should be named according to species names.

Value

An object of class "anova"

Author(s)

Eric W. Goolsby

References

Adams, D.C. 2014. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution. 68:2675-2688.

Golsby E.W. 2015. Covariance-based maximum likelihood estimation is equivalent to and more flexible than distance-based phylogenetic comparative methods for high-dimensional multivariate traits. In review.

See Also

```
procD.pgls
```

Examples

```
# Simulate random data for a multivariate trait with 50 species and 10 trait dimensions
s <- sim.mult(nspecies = 50,R = diag(10))

# Simulate a univariate trait
require(phytools)
X <- as.matrix(fastBM(s$tree))

# Estimate evolutionary rates
rate.mult.fitted <- rate.mult(tree = s$tree,Y = s$Y_means)

# Perform multivariate phylogenetic regression
pgls.mult(rate.mult.fitted = rate.mult.fitted,X = X)</pre>
```

phylocurve

Ancestral curve reconstruction for logistic regression (glm with logit link)

Description

This function performs ancestral reconstruction of function-valued traits (assuming Brownian motion).

12 phylocurve

Usage

```
phylocurve(formula, tree, data, ymin = 0.01, ymax = 0.99, ylength = 30,
tip_coefficients, species_identifier = "species", verbose = FALSE)
```

Arguments

formula Formula for function-valued trait (currently only supports models of the form

 $Y \sim X$

tree An phylogenetic tree of class "phylo"

data A data frame with data for tip curve estimation, where each row contains a single

data point. A column named "species" has the species names corresponding to each data point, a predictor (X) variable and the response (Y) variable, which

must be scaled between 0 and 1.

ymin Because 0 and 1 are undefined for inverse logit functions, the minimum and

maximum values are defaulted to .01 and .99. Can be adjusted as needed.

ymax Because 0 and 1 are undefined for inverse logit functions, the minimum and

maximum values are defaulted to .01 and .99. Can be adjusted as needed.

ylength How many landmarks (points on the curve) to evaluate.

tip_coefficients

A matrix of regression coefficients can be provided instead of raw data. Row names should be species names, the first column should be the glm logit intercept parameter, and the second column should be the glm logit slope parameter.

species_identifier

Default is "species". Can be changed if the column in data has a different species

identifier name.

verbose Whether to print progress during ancestral curve reconstruction.

Details

This function uses a PGLS-based method described in Goolsby (2015) to perform ancestral curve reconstruction. This function uses a fast tree transversal method via the phylolm package (Ho and Ane, 2014)

Value

node_coefficients

Estimated regression coefficients of internal nodes

fitted_x Reconstructed x-values for each internal node. Curve coordinates for internal

node i are (fitted_x[,i],y_vals)

lower_CI_x Lower 95 percent confidence interval for fitted x-values for each internal node

upper_CI_x Upper 95 percent confidence interval for fitted x-values for each internal node

y_vals Vector of y-values used as inputs for inverse function evaluation. Curve coordi-

nates for internal node i are (fitted_x[,i],y_vals)

tip_coefficients

Estimated regression coefficients of tip curves.

Author(s)

Eric W. Goolsby

phylocurve.generalized 13

References

Goolsby, E.W. 2015. "Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits." Systematic Biology. In press.

Ho, L. S. T. and Ane, C. 2014. "A linear-time algorithm for Gaussian and non-Gaussian trait evolution models". Systematic Biology 63(3):397-408.

Examples

```
# simulate evolution of a function-valued trait (glm with logit link)
sim_data <- sim.curves()

# perform ancestral curve reconstruction
anc_recon <- phylocurve(y~x,tree = sim_data$tree,data = sim_data$data)

# get tip coefficients and aligned function data
tip_coefficients <- get_tip_coefficients(formula = y~x,tree = sim_data$tree,data = sim_data$data)
data <- get_aligned_function_data(tip_coefficients)

# estimate evolutionary rates
rate.mult.fitted <- rate.mult(sim_data$tree,data)

phylocurve.generalized

Align curves of any shape</pre>
```

Description

Aligns curves by x,y coordinates so that species curves can be analyzed as a single high-dimensional trait.

Usage

```
phylocurve.generalized(tree, X, Y)
```

Arguments

tree	An object of class phylo
Χ	A numeric vector of length M, used for each species
Υ	An N x M marix where each row corresponds to a species and each column
	corresponds to index M_i of X

Value

x and y coordinates arranged in a single row vector for each species		
aligned_coordinates		
x and y coordinates for each species (one data point per row)		
Aligned X coordinates in N x M matrix		
Aligned Y coordinates in N x M matrix		
Number of aligned landmarks		
Vector of root X values (assuming Brownian motion)		
Vector of root Y values (assuming Brownian motion)		
Phylogenetic tree supplied into the function		

14 phylocurve.trim

Author(s)

Eric W. Goolsby

References

Goolsby, E.W. 2015. "Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits." Systematic Biology. In press.

Examples

```
# NOT RUN (takes several minutes)
# x_length <- 50
# nspecies <- 25
#sim_data <- sim.curves(nspecies = nspecies,x_length = x_length)
#
# Perform ancestral curve reconstruction without any assumptions about function shape
# P <- phylocurve.generalized(tree = sim_data$tree,X = sim_data$data$x[1:x_length],
# Y = t(matrix(sim_data$data$y,nrow = x_length,
# dimnames = list(1:x_length,sim_data$tree$tip.label))))
#
# Data might need trimming for values where there is no variation
# plot(P$anc_X,P$anc_Y)
#
# P.trimmed <- phylocurve.trim(phylocurve.generalized = P,min_X = 4,max_X = 8)
#
# Perform comparative analyses on trimmed curves
# rate.mult.fitted <- rate.mult(tree = P.trimmed$tree,Y = P.trimmed$aligned_data)
# K.mult(rate.mult.fitted)</pre>
```

phylocurve.trim

Trim aligned curves

Description

Trims curves to specified range of X and Y coordinates

Usage

```
phylocurve.trim(phylocurve.generalized, min_Y = -Inf,
    max_Y = Inf, min_X = -Inf, max_X = Inf)
```

Arguments

phylocurve.generalized

The value returned by the phylocurve generalized function

min_Y	The minimum Y value for trimming curves
max_Y	The maximum Y value for trimming curves
min_X	The minimum X value for trimming curves
max_X	The maximum X value for trimming curves

polynomial.fit 15

Value

aligned_data x and y coordinates arranged in a single row vector for each species aligned_coordinates x and y coordinates for each species (one data point per row) aligned_X Aligned X coordinates in N x M matrix aligned_Y Aligned Y coordinates in N x M matrix Number of aligned landmarks nr Vector of root X values (assuming Brownian motion) anc_X anc_Y Vector of root Y values (assuming Brownian motion) Phylogenetic tree supplied into the function tree

Author(s)

Eric W. Goolsby

References

Goolsby, E.W. 2015. "Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits." Systematic Biology. In press.

Examples

```
# NOT RUN (takes several minutes)
# x_length <- 50
# nspecies <- 25
#sim_data <- sim.curves(nspecies = nspecies,x_length = x_length)
#
# Perform ancestral curve reconstruction without any assumptions about function shape
# P <- phylocurve.generalized(tree = sim_data$tree,
# X = sim_data$data$x[1:x_length],Y = t(matrix(sim_data$data$y,
# nrow = x_length,dimnames = list(1:x_length,sim_data$tree$tip.label))))
#
# Data might need trimming for values where there is no variation
# plot(P$anc_X,P$anc_Y)
#
# P.trimmed <- phylocurve.trim(phylocurve.generalized = P,min_X = 4,max_X = 8)
#
# Perform comparative analyses on trimmed curves
# rate.mult.fitted <- rate.mult(tree = P.trimmed$tree,Y = P.trimmed$aligned_data)
# K.mult(rate.mult.fitted)</pre>
```

polynomial.fit

Fit polynomial curves to species data using stepwise regression

Description

Transforms raw data into regression curves using stepwise (AIC or BIC) polynomial regression. The maximum number of parameters (nterms), response data can be constrained between minima and maxima (for example, the default sets any negative predicted y value to 0).

print.lr.test

Usage

```
polynomial.fit(data, x_variable, y_variable, method = "BIC",
  nterms = 2, min_x = -Inf, max_x = Inf, min_y = 0, max_y = Inf, eval_length = 30)
```

Arguments

data	Data frame with function-valued species data along with a column named "species"
x_variable	The name of the column in data corresponding to the predictor (x) variable
y_variable	The name of the column in data corresponding to the response (y) variable
method	Metric for stepwise polynomial regression. Either "AIC" or "BIC" (the default).
nterms	Maximum number of terms to allow in polynomial regression.
min_x	Lower range to remove from raw x data
max_x	Upper range to remove from raw x data
min_y	Lower range to remove from predicted response (for example, for response data in which only positive values are allowed, the min_y can be set to 0 (the default)).
max_y	Upper range to remove from predicted response.
eval_length	How many points to evaluate along the range of x.

Value

X X (formatted for phylocurve.generalized)Y Y (formatted for phylocurve.generalized)

Examples

```
x_length <- 50
nspecies <- 25
sim_data <- sim.curves(nspecies = nspecies,x_length = x_length)

# Fit polynomial curves to raw data
poly_data <- polynomial.fit(data = sim_data$data,x_variable = "x",y_variable = "y",min_y = 0)

# Align curve data using dynamic time warping
# NOT RUN (takes several minutes)
# P <- phylocurve.generalized(tree = sim_data$tree,X = poly_data$X,Y = poly_data$Y)

# Perform comparative analyses on aligned curves
# rate.mult.fitted <- rate.mult(tree = P$tree,Y = P$aligned_data)
# K.mult(rate.mult.fitted)</pre>
```

print.lr.test

Print lr.test

Description

Generic S3 method for lr.test

print.rate.mult 17

Usage

```
## S3 method for class 'lr.test'
print(x, ...)
```

Arguments

x An object of class lr.test

... Further arguments passed to or from other methods.

print.rate.mult

Print rate.mult

Description

Generic S3 method for rate.mult

Usage

```
## S3 method for class 'rate.mult'
print(x, ...)
```

Arguments

x An object of class rate.mult

... Further arguments passed to or from other methods.

rate.mult

Estimate multivariate evolutionary rates and models

Description

This function estimates multivariate evolutionary rates (Adams 2014) and alternative evolutionary models using a covariance-based approach (Goolsby 2015). The function must be run prior to running other multivariate functions, including K.mult, pgls.mult, compare.rate.mult, and compare.multivar.rate.mult.

```
rate.mult(tree = tree, Y = Y, type = c("mult", "diag", "all"),
method = c("REML", "ML"), error = c("none", "estimate", "supply"),
error_n = 20, error_supply, model = "BM", fixed_sigma2, fixed_model_pars)
```

18 rate.mult

Arguments

tree An object of class phylo

Y A data frame in which the first column is labeled "species", and is filled with

species names. The remaining columns contain values for the multivariate trait Y. Multiple observations per species (using multiple rows) and missing data are

allowed.

type The form of evolutionary rate estimation to use. If type="mult", a single evolu-

tionary rate is estimated for all trait dimensions. If type="diag", a separate evolutionary rate is estimated for all trait dimensions. NOTE: the option type="all" is also available, in which an entire covariance matrix R is estimated for traits (not compatible with other functions!), in which case, only BM evolution with

no missing data and no within-species error is allowed.

method Whether to use restricted maximum likelihood (REML, the default) or maxi-

mum likelihood.

error Whether to incorporate within-species measurement error. Can be set to "none"

(the default) if only a single observation is available per species. If raw data with multiple observations per species is supplied, select "estimate" to estimate pooled within-species variance for species with less than error_n observations (for species with >error_n observations, variance is used). Alternatively, a matrix of the square of standard errors (variance divided by the number of within-species observations) for each species and trait dimension can be supplied if

error is set to "supply".

error_n Only relevant if error="estimate". For trait dimensions with less than error_n

within-species observations, pooled within-species variance is used. If the number of within-species observations for a trait dimension is greater than or equal

to error_n, variance is estimated directly.

error_supply Only relevent if error="supply". A matrix of species and trait dimension squared

standard errors (or variance divided by the number of within-species observa-

tions). Row names should be species names.

model Evolutionary model specification - default is "BM". Other options include

"OUrandomRoot", "OUfixedRoot", "EB", "lambda", "kappa", and "delta". More than one model may be specified (e.g., c("lambda", "EB")), in which case the branch length transformations are applied in order of the specified models. NOTE:

if incorporating alternative models, DO NOTE include "BM".

fixed_sigma2 If the evolutionary rate (single value if type="mult") or rates (if type="diag") is

desired to be fixed, entire it here.

fixed_model_pars

If the evolutionary model parameter or parameters are desired to be fixed, entire them here in a vector named according to the appropriate model (should be in

order of the models specified by the model argument).

Value

sigma2 Estimated evolutionary rate

pars Estimated evolutionary model parameters (NULL If model="BM")

logL Log-likelihood of the estimated parameters

method REML or ML
model Evoluionary model

rate.mult.args

List of arguments to be called with do.call(rate.mult,rate.mult\$rate.mult.args)

sim.curves 19

Author(s)

Eric W. Goolsby

References

Adams D.C. 2014. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology. 63:166-177.

Golsby E.W. 2015. Covariance-based maximum likelihood estimation is equivalent to and more flexible than distance-based phylogenetic comparative methods for high-dimensional multivariate traits. In review.

See Also

```
compare.multivar.rate.mult, compare.rate.mult, compare.evol.rates
```

Examples

```
# Simulate random data for a multivariate trait with 50 species and 10 trait dimensions
s <- sim.mult(nspecies = 50,R = diag(10))

# Estimate the null model (a single rate parameter for the entire tree)
null <- rate.mult(tree = s$tree,Y = s$Y_means)

# Set 2 groups of species to test for different evolutionary rates
groups <- setNames(factor(c(rep("a",25),rep("b",25)),levels=c("a","b")),s$tree$tip.label)

# Test the hypothesis of different evolutionary rates for each group
compare.rate.mult(rate.mult.fitted = null,groups = groups)</pre>
```

sim.curves

Simulate function-valued curve evolution

Description

This function simulates evolution of a function-valued trait (glm with logit link) under Brownian motion.

Usage

```
sim.curves(nspecies = 30, x_length = 20, startree = FALSE, lambda = 1, seed)
```

Arguments

nspecies	Number of species
x_length	Number of points on the curve to simulate
startree	Simulate using a star tree
lambda	Pagel's lambda tree transformation parameter (lambda = 0 for star tree; lambda = 1 for original tree)
seed	Optional seed to set for reproducibility

20 sim.mult

Value

data Data frame with simulated curves formatted appropriately for phylocurve()

tree Phylogenetic tree of class "phylo"

true_coefs True tip and ancestral coefficients for glm logit link

References

Pagel, M. 1999. "Inferring the historical patterns of biological evolution". Nature 401:877-884.

Examples

```
# simulate evolution of a function-valued trait (glm with logit link)
sim_data <- sim.curves()

# perform ancestral curve reconstruction
anc_recon <- phylocurve(y~x,tree = sim_data$tree,data = sim_data$data)

# get tip coefficients and aligned function data
tip_coefficients <- get_tip_coefficients(formula = y~x,tree = sim_data$tree,data = sim_data$data)
data <- get_aligned_function_data(tip_coefficients)

# estimate evolutionary rates
rate.mult.fitted <- rate.mult(sim_data$tree,data)</pre>
```

sim.mult

Simulate multivariate trait evolution

Description

Simulates multivariate trait evolution

Usage

```
sim.mult(nspecies, R, error, nreps = 1, nmissing = 0,
model, parameters, anc, tree, seed, nsims = 1)
```

Arguments

nspecies	Number of species to simulate
R	Covariance matrix for traits to simulate
error	Vector of variances to simulate within-species variation for each trait
nreps	Number of replicates to simulate for each trait per species
nmissing	Number of data points to randomly remove
model	Model of evolution (if not "BM", can be "OUrandomRoot", "OUfixedRoot", "EB", "lambda", "kappa", or "delta")
parameters	List of evolutionary model parameters. For either OU model, use alpha. For EB, use rate. For lambda, kappa, or delta, use lambda, kappa, or delta.
anc	Vector of ancestral values for each trait (default is 0).
tree	Can provide phylogenetic tree for simulations here; otherwise it is randomly generated based on nspecies
seed	Whether or not to set a seed for reproducible results
nsims	Number of simulations (default is 1)

sim.mult 21

Value

Y_means Means of simulated data

Y_raw Raw simulated data (only different from means if nreps>1)

Y_array Means of simulated data in array format

Y_original Original simulated species means (only different if nerps>1)

tree An object of class phylo

tree_sim The tree on which data was simulated (only different if model!="BM")

Author(s)

Eric W. Goolsby

Examples

```
# Simulate random data for a multivariate trait with 50 species and 10 trait dimensions
s <- sim.mult(nspecies = 50,R = diag(10))

# Estimate evolutionary rates
rate.mult.fitted <- rate.mult(tree = s$tree,Y = s$Y_means)

# Estimate multivariate phylogenetic signal
K.mult(rate.mult.fitted = rate.mult.fitted)</pre>
```

Index

```
*Topic PGLS
    phylocurve-package, 2
*Topic ancestral state reconstruction
    phylocurve-package, 2
*Topic dose-response curves
    phylocurve-package, 2
*Topic evolution of tolerance
    phylocurve-package, 2
*Topic function-valued traits
    phylocurve-package, 2
*Topic infnite-dimensional traits
    phylocurve-package, 2
*Topic phenotypic plasticity
    phylocurve-package, 2
*Topic phylogenetic comparative
        method
    phylocurve-package, 2
*Topic phylogenetic signal
    phylocurve-package, 2
*Topic reaction norms
    phylocurve-package, 2
compare.evol.rates, 4, 5, 19
compare.multivar.rate.mult, 3, 5, 19
compare.rate.mult, 4, 4, 19
drm, 10
get_aligned_function_data, 5
get_tip_coefficients, 6
getMeanFunctions, 10
GP.fit, 7
GP_fit, 8
K.mult, 8
nonlinear.fit, 9
pgls.mult, 10
phylocurve, 11
phylocurve-package, 2
phylocurve.generalized, 13
phylocurve.trim, 14
physignal, 9
polynomial.fit, 15
```